Abstract

We have recently found that the membrane-associated guanylate kinase with inverted organization-1 (MAGI-1) was enriched in rat nervous tissues such as the glomeruli in olfactory bulb of adult rats and dorsal root entry zone in spinal cord of embryonic rats. In addition, we revealed the localization of MAGI-1 in the growth cone of the primary cultured rat dorsal root ganglion cells. These results point out the possibility that MAGI-1 is involved in the regulation of neurite extension or guidance. In this study, we attempted to reveal the physiological role(s) of MAGI-1 in neurite extension. We found that RNA interference (RNAi)-mediated knockdown of MAGI-1 caused inhibition of nerve growth factor (NGF)-induced neurite outgrowth in PC12 rat pheochromocytoma cells. To clarify the involvement of MAGI-1 in NGF-mediated signal pathway, we tried to identify binding partners for MAGI-1 and identified p75 neurotrophin receptor (p75NTR), a low affinity NGF receptor, and Shc, a phosphotyrosine-binding adaptor. These three proteins formed an immunocomplex in PC12 cells. Knockdown as well as overexpression of MAGI-1 caused suppression of NGF-stimulated activation of the Shc-ERK pathway, which is supposed to play important roles in neurite outgrowth of PC12 cells. These results indicate that MAGI-1 may act as a scaffolding molecule for NGF receptor-mediated signaling pathway.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.