Abstract
This paper deals with the synthesis of two nanohybrid materials based on maghemite (γ-Fe2O3) and poly-dl-alanine using a two-step procedure consisting of maghemite nanoparticles synthesis by microemulsion method and nanohybrids obtaining by coating of maghemite nanoparticles with poly-dl-alanine biopolymer in two different molar ratios (H1:5 and H1:15). The maghemite and their corresponding nanohybrids were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, X-ray photoemission spectroscopy, Mössbauer spectroscopy, Transmission electron microscopy, High resolution transmission electron microscopy with selected area electron diffraction and Atomic absorption spectroscopy. The two nanohybrids under the investigation have the average particle sizes of 22nm and 23nm. The Fourier transform infrared spectroscopy spectra and X-ray photoemission spectroscopy data indicate the existence of some interactions between the maghemite nanoparticles and poly-dl-alanine shell. The saturation magnetization values for maghemite and the two nanohybrids determined by a Vibrating Sample Magnetometer correspond to a typical superparamagnetic behavior suitable for applying in biomedical field. Also, with respect of biomedical application the biological activity of maghemite and its corresponding nanohybrids was investigated on healthy human cells (PBMC) and cancerous cells (HeLa). Furthermore, in order to support the multifunctionality of the γ-Fe2O3 sample and nanohybrids we also investigated their wastewater treatment properties by measuring the removal efficiency of heavy metal Cd (II) ions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.