Abstract
The 64 km wide Ohm crater is a complex impact crater located on the northern side of the lunar farside. In this study, we generated abundance maps for FeO and TiO2 as well as Spectral Parameter maps to determine the composition. Orthopyroxene and Clinopyroxene, two mafic minerals, are present in the Ohm crater, according to spectral analyses of M3 data. A geostatistical technique is used to optimize the variation trend of diagnostic characteristics across different sites. We noticed that Opx dominates the rest of the crater, while Cpx dominates the western portion of Ohm. Opx denotes sources from above and/or below the crust-mantle boundary, whereas Cpx suggests impact melt crystallization of an anorthositic target crust. The NASA mission GRAIL, which is specifically designed to study gravity anomalies, has found negative anomalies near the Ohm crater that may indicate a thicker crust beneath the crater. Unequal Bouguer gravity anomalies and negative anomalies have been found in the vicinity of the Ohm crater, but they are not clearly connected to the internal morphology. Surface morphological features have no connection to these anomalies of uneven gravity. In addition, the Bouguer gravity signature may be affected by pre-existing subsurface density structure, and post-impact events (such as magmatism), which could account for some of the observed scatter. The regional gravity anomaly also indicates low values in the Ohm crater, suggesting that the thicker crust and the source of the geochemical anomalies are at deeper levels. Strong negative anomalies are seen in the predicted residual gravity data close to the Ohm crater, which suggests low-density bodies at the crustal level. We propose that the pyroxenes are the end product of impact melt crystallization based on regional and residual gravity anomalies, compositional and mineralogical features of the Ohm crater, and geophysical data. Ejecta from the SPA, Orientale, and Mascon Hertzsprung basins, which may or may not have differed from impact melt formed during the Ohm impact event, should also be looked at when analyzing the distribution of mafic minerals throughout the crater. The GRAIL crustal thickness model-1 for the Ohm crater indicates a thicker crust, demonstrating that the mantle upliftment is not the underlying cause of the geochemical anomalies in this area.Acknowledgement: S. M. Patel and M. R. El-maarry acknowledge support for this work through an internal grant (8474000336-KU-SPSC).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.