Abstract

Mineralogical, geochemical and S-isotopic studies were carried out on seafloor massive sulfides (SMS) and hydrothermally altered rocks from the mafic-hosted TaiJi field (including TaiJi-1 and TaiJi-2 sites), which is located on the margin of a nontransform discontinuity (NTD) on the Southern Mid-Atlantic Ridge (SMAR). The main hydrothermal precipitates of TaiJi-1 were massive sulfides, while TaiJi-2 produced a large amount of semi-massive sulfides. Significant rock alteration is an important feature of this field, and large amounts of clay minerals (chlorite) occurred in the semi-massive sulfides. Geochemically, notable negative correlations were identified between rock forming elements (Mg) and major hydrothermal metal elements such as Zn + Cu and Co in semisulfides. Such mineralogical and geochemical characteristics, together with low Co/Ni ratio (similar to the surrounding rocks) of the semi-massive sulfides and the unique REE features of some altered rocks, tell us that the prominent mineralization mechanism for these semi-massive sulfides was probably related to rock mineralization. Thus, TaiJi-2 appears to differ significantly from the TaiJi-1 in terms of sulfide mineralization mechanism. Moreover, the TaiJi sulfides are remarkable for large δ34S variation (7.2–15.3%). We suggest that seawater corrosion after sulfides precipitation were responsible for 34S enrichment in sulfides. Furthermore, our work sheds some light on the comparison between TaiJi and other NTD-related fields along the Mid-Atlantic Ridge. We argue that rock mineralization may represent an important mineralization type in NTDs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call