Abstract
ABSTRACT We describe the method used to detect sources for the Herschel–ATLAS (Herschel Astrophysical Terahertz Large Area Survey) survey. The method is to filter the individual bands using a matched filter, based on the point spread function (PSF) and confusion noise, and then form the inverse variance-weighted sum of the individual bands, including weights determined by a chosen spectral energy distribution. Peaks in this combined image are used to estimate the source positions. The fluxes for each source are estimated from the filtered single-band images, interpolated to the exact subpixel position. We test the method by creating simulated maps in three bands with PSFs, pixel sizes, and Gaussian instrumental noise that match the 250, 350, and 500 μm bands of Herschel–ATLAS. We use our method to detect sources and compare the measured positions and fluxes to the input sources. The multiband approach allows reliable source detection a factor 1.2–3 lower in flux compared to single-band source detection, depending on the source colours. The false detection rate is reduced by a factor between 4 and 10, and the variance of the source position errors is reduced by about a factor 1.5. We also consider the effect of confusion noise and find that the appropriate matched filter gives a further improvement in completeness and noise over the standard PSF filter approach. Overall the two modifications give a factor of 1.5–3 improvement in the depth of the recovered catalogues compared to a single-band PSF filter approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.