Abstract
Wind turbine power generation, both onshore and offshore, has gained significant popularity over the past few decades. However, the design of a turbine’s foundation, capable of supporting a tall structure subject to large horizontal forces, remains challenging. Complex wind loading and intricate soil-structure interaction between the foundation and the supporting soil requires consideration. Although commercial structural health monitoring (SHM) systems provide several advantages, they remain cost prohibitive. This paper demonstrates the development, testing, fabrication, installation and validation of a low-cost, multi-channel, Arduino-based differential voltage data acquisition system (MADV-DAQ) suitable for remote, battery powered measurements of multiple Wheatstone bridge-based (strain) sensors. The instrumented wind turbine (120 m high, 3.45 MW generation capacity) forms part of a newly constructed onshore wind farm in South Africa. The developed MADV-DAQ system proved valuable in measuring strains associated with the wind turbine tower, quantifying the true magnitude of the loads being transferred to the underlying foundation. MADV-DAQ was designed to relay the real-time measurements to two, independent cloud platforms for aggregation, visualization and subsequent analysis. MADV-DAQ was purposefully designed as a universal data acquisition system, compatible with any Wheatstone bridge-based sensor design, including strain gauges, tensiometer and similar MEMS-based sensors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.