Abstract

Background & AimsAberrant lymphocyte homing could potentially link inflammatory processes in the intestine and the liver, as distinct hepatobiliary diseases frequently develop as extra-intestinal manifestations in inflammatory bowel disease. In this study, we examined the role of the gut-tropic leukocyte adhesion molecule β7 integrin and its endothelial ligand mucosal addressin cell-adhesion molecule-1 (MAdCAM-1) in immune-mediated hepatitis in mice.MethodsWild-type (WT) mice, MAdCAM-1-deficient mice, β7 integrin-deficient mice, RAG-2–deficient mice, RAG-2/MAdCAM-1 double-deficient mice, and RAG-2/β7 integrin double-deficient mice were subjected to concanavalin A (ConA)-induced hepatitis. The degree of hepatitis was evaluated by histology, flow cytometry, and expression analysis of inflammatory mediators. The motility of lymphocytes in progressive liver damage was assessed by intravital laser scanning multiphoton microscopy.ResultsAblation of MAdCAM-1 or β7 integrin ameliorated ConA-induced hepatitis in mice. β7 integrin-deficient lymphocytes caused less liver damage than WT lymphocytes in ConA-treated RAG-2–deficient mice. Moreover, WT lymphocytes caused less liver damage in ConA-treated RAG-2/β7 integrin double-deficient mice than in similarly treated RAG-2–deficient mice, indicating that β7 integrin expression contributes significantly to the liver damage mediated by innate immune cells. MAdCAM-1 expression was dependent on β7 integrin expression on adaptive and innate immune cells. Most importantly, lymphocytes in ConA-treated MAdCAM-1-deficient mice displayed more motility and less adhesion in the liver sinusoids in vivo, than lymphocytes in similarly treated WT mice.ConclusionsThese data suggest that β7 integrin expression on lymphocytes and innate immune cells contributes to MAdCAM-1 upregulation and liver damage in acute immune-mediated hepatitis, most likely by facilitating lymphocyte/sinusoidal endothelial cell interactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.