Abstract

Scientific workflows are increasingly used in High Performance Computing (HPC) environments to manage complex simulation and analyses, often consuming and generating large amounts of data. However, workflow tools have limited support for managing the input, output and intermediate data. The data elements of a workflow are often managed by the user through scripts or other ad-hoc mechanisms. Technology advances for future HPC systems is redefining the memory and storage subsystem by introducing additional tiers to improve the I/O performance of data-intensive applications. These architectural changes introduce additional complexities to managing data for scientific workflows. Thus, we need to manage the scientific workflow data across the tiered storage system on HPC machines. In this paper, we present the design and implementation of MaDaTS (Managing Data on Tiered Storage for Scientific Workflows), a software architecture that manages data for scientific workflows. We introduce Virtual Data Space (VDS), an abstraction of the data in a workflow that hides the complexities of the underlying storage system while allowing users to control data management strategies. We evaluate the data management strategies with real scientific and synthetic workflows, and demonstrate the capabilities of MaDaTS. Our experiments demonstrate the flexibility, performance and scalability gains of MaDaTS as compared to the traditional approach of managing data in scientific workflows.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call