Abstract

BackgroundConventionally, comparison among amniotes – birds, mammals, and reptiles – has often been approached through analyses of mammals and, for comparison, birds. However, birds are morphologically and physiologically derived and, moreover, some parts of their genomes are recognized as difficult to sequence and/or assemble and are thus missing in genome assemblies. Therefore, sequencing the genomes of reptiles would aid comparative studies on amniotes by providing more comprehensive coverage to help understand the molecular mechanisms underpinning evolutionary changes.ResultsHerein, we present the whole genome sequences of the Madagascar ground gecko (Paroedura picta), a promising study system especially in developmental biology, and used it to identify changes in gene repertoire across amniotes. The genome-wide analysis of the Madagascar ground gecko allowed us to reconstruct a comprehensive set of gene phylogenies comprising 13,043 ortholog groups from diverse amniotes. Our study revealed 469 genes retained by some reptiles but absent from available genome-wide sequence data of both mammals and birds. Importantly, these genes, herein collectively designated as ‘elusive’ genes, exhibited high nucleotide substitution rates and uneven intra-genomic distribution. Furthermore, the genomic regions flanking these elusive genes exhibited distinct characteristics that tended to be associated with increased gene density, repeat element density, and GC content.ConclusionThis highly continuous and nearly complete genome assembly of the Madagascar ground gecko will facilitate the use of this species as an experimental animal in diverse fields of biology. Gene repertoire comparisons across amniotes further demonstrated that the fate of a duplicated gene can be affected by the intrinsic properties of its genomic location, which can persist for hundreds of millions of years.

Highlights

  • Comparison among amniotes – birds, mammals, and reptiles – has often been approached through analyses of mammals and, for comparison, birds

  • The relatively thin eggshells enable in ovo manipulation [7, 8], and embryonic stages of this species have already been categorized [7]. With these developmental biology advantages, embryos of this gecko species are becoming frequently used for various studies in this field, revealing the evolutionary histories of molecular mechanisms of cortical neurogenesis and gastrulation in amniotes [9, 10], which has not yet been accomplished using only mammals and birds

  • Genome sequences of the Madagascar ground gecko, with higher feasibility in experimentation, will facilitate molecular comparative studies involving this species in diverse research fields

Read more

Summary

Introduction

Comparison among amniotes – birds, mammals, and reptiles – has often been approached through analyses of mammals and, for comparison, birds. The relatively thin eggshells enable in ovo manipulation [7, 8], and embryonic stages of this species have already been categorized [7] With these developmental biology advantages, embryos of this gecko species are becoming frequently used for various studies in this field, revealing the evolutionary histories of molecular mechanisms of cortical neurogenesis and gastrulation in amniotes [9, 10], which has not yet been accomplished using only mammals and birds. Its seasonal breeding and soft eggshell [11] have limited the conduct of continuous and operational experiments Given these issues, genome sequences of the Madagascar ground gecko, with higher feasibility in experimentation, will facilitate molecular comparative studies involving this species in diverse research fields

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call