Abstract

In mitosis, the spindle checkpoint protein Mad2 averts aneuploidy by delaying anaphase onset until chromosomes align. Here we show that depletion of Mad2 in meiosis I mouse oocytes induced an increased incidence of aneuploidy. Proteolysis of cyclin B and securin commenced earlier in Mad2-depleted oocytes, resulting in a shortened duration of meiosis I. Furthermore, overexpression of Mad2 inhibited homolog disjunction. We conclude that Mad2 delays the onset of cyclin B and securin degradation and averts aneuploidy during meiosis I in mammalian oocytes. The data suggest a link between trisomies such as Down syndrome and defective oocyte spindle checkpoint function.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call