Abstract

The bHLH-ZIP protein Mad heterodimerizes with Max as a sequence-specific transcriptional repressor. Mad is rapidly induced upon differentiation, and the associated switch from Myc-Max to Mad-Max heterocomplexes seem to repress genes normally activated by Myc-Max. We have identified two related mammalian cDNAs that encode Mad-binding proteins. Both possess sequence homology with the yeast transcription repressor Sin3, including four conserved paired amphipathic helix (PAH) domains. mSin3A and mSin3B bind specifically to Mad and the related protein Mxi1. Mad-Max and mSin3 form ternary complexes in solution that specifically recognize the Mad-Max E box-binding site. Mad-mSin3 association requires PAH2 of mSin3A/mSin3B and the first 25 residues of Mad, which contains a putative amphipathic α-helical region. Point mutations in this region eliminate interaction with mSin3 proteins and block Mad transcriptional repression. We suggest that Mad-Max represses transcription by tethering mSin3 to DNA as corepressors and that a transcriptional repression mechanism is conserved from yeast to mammals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.