Abstract
A notorious problem in queueing theory is to compute the worst possible performance of the GI/G/1 queue under mean-dispersion constraints for the interarrival- and service-time distributions. We address this extremal queue problem by measuring dispersion in terms of mean absolute deviation (MAD) instead of the more conventional variance, making available methods for distribution-free analysis. Combined with random walk theory, we obtain explicit expressions for the extremal interarrival- and service-time distributions and, hence, the best possible upper bounds for all moments of the waiting time. We also obtain tight lower bounds that, together with the upper bounds, provide robust performance intervals. We show that all bounds are computationally tractable and remain sharp also when the mean and MAD are not known precisely but are estimated based on available data instead. Summary of Contribution: Queueing theory is a classic OR topic with a central role for the GI/G/1 queue. Although this queueing system is conceptually simple, it is notoriously hard to determine the worst-case expected waiting time when only knowing the first two moments of the interarrival- and service-time distributions. In this setting, the exact form of the extremal distribution can only be determined numerically as the solution to a nonconvex nonlinear optimization problem. Our paper demonstrates that using mean absolute deviation (MAD) instead of variance alleviates the computational intractability of the extremal GI/G/1 queue problem, enabling us to state the worst-case distributions explicitly.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.