Abstract

PurposeTo evaluate structure and function of macular retinal layers in nonhuman primate (NHP) experimental glaucoma (EG).MethodsTwenty-one NHP had longitudinal imaging of macular structure by SDOCT, 16 also had recordings of function by multifocal ERG. The average thickness over 15° was derived for seven individual SDOCT layers: macular nerve fiber layer (m-NFL), retinal ganglion cell layer (RGCL), inner plexiform layer (IPL), inner nuclear layer (INL), outer plexiform layer (OPL), outer nuclear layer+inner segments combined (ONL+IS), and outer segments (OS). Peripapillary RNFL thickness (ppRNFLT) was measured from a single circular B-scan with 12° diameter. Responses to a slow-sequence multifocal ERG (mfERG) stimulus (7F) were filtered (at 75 Hz) into low- and high-frequency components (LFC, HFC).ResultsAt final follow-up, significant structural loss occurred only in EG eyes and only for ppRNFLT (−29 ± 23%), m-NFL (−17 ± 16%), RGCL (−22 ± 15%), and IPL (−19 ± 14%); though there was also a small increase in OPL (+6 ± 7%) and ONL+IS (4 ± 4%) and a similar tendency for INL. Macular structural loss was correlated with ppRNFLT only for the NFL, RGCL and IPL (R = 0.95, 0.93 and 0.95, respectively, P < 0.0001). Significant functional loss occurred only for HFC and N2 in EG eyes. Significant longitudinal structure–function correlations (P < 0.01) were observed only in EG eyes and only for mfERG HFC and N2: HFC was correlated with ppRNFLT (R = 0.69), macular NFL (R = 0.67), RGCL (R = 0.74), and IPL (R = 0.72); N2 was correlated with RGCL (R = 0.54) and IPL (R = 0.48). High-frequency components amplitude change was inversely correlated with outer retinal thickness change (= −0.66).ConclusionsMacular structural and functional losses are correlated and specific to ganglion cells over a wide range of EG severity. Outer retinal changes are likely due to inner retinal loss.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call