Abstract

A physically based model is developed to study the transport of a solute utilized by microorganisms forming a biofilm coating on soil grains in a porous medium. A wavy‐walled channel is used as a geometrical model of a porous medium and a biofilm is attached to the channel wall. Within the biofilm the solute is consumed according to a first‐order volumetric rate. A numerical study is performed to obtain the dependence of the macrotransport coefficients on the Peclet number and Damkohler number. It is found that in some cases of practical importance the pore fluid is not well mixed, and mass transport limitations can control macroreaction rates. For diffusion‐limited cases (large Damkohler numbers) increased solvent velocity can enhance the macroreaction rate by a factor of almost 3. Mean solute and mean solvent velocities are, in general, not equal, and mean solute velocities can exceed mean solvent velocities by 60% at high Damkohler numbers. These results agree qualitatively with those of a previous numerical study by Edwards et al. [1993]. The results also suggest that due to the spatially variable pore geometry, the biomass nearest the pore throat is more effective at consuming the solute than biomass in the pore chamber. A comparison is made between mass transfer correlations and the results determined for the macroreaction rate coefficient. We find that over a limited range of Peclet numbers a macroscale Sherwood number follows the Pe⅓ behavior determined from experimental mass transfer correlations and predicted by boundary layer theory.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.