Abstract

The two criteria of ensemble equivalence, i.e., macrostate equivalence and measure equivalence, are investigated for a general pair of states. Macrostate equivalence implies the two ensembles are indistinguishable by the measurement of macroscopic quantities obeying the large-deviation principle, and measure equivalence means that the specific relative entropy of these two states vanishes in the thermodynamic limit. It is shown that measure equivalence implies a macrostate equivalence for a general pair of states by deriving an inequality connecting the large-deviation rate functions to the specific relative Renyi entropies. The result is applicable to both quantum and classical systems. As applications, a sufficient condition for thermalization, the time scale of quantum dynamics of macrovariables, and the second law with strict irreversibility in a quantum quench are discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call