Abstract

A mathematical model of the dendritic solidification of multicomponent alloys, that includes thermosolutal convection and macrosegregation, is presented. The model is an extension of one previously developed for binary alloys. Numerical simulations are given for ternary and quaternary Ni-base alloys, and the evolution of macrosegregation during solidification is studied. The results show that the segregation patterns vary greatly with cooling conditions, adopting several shapes and levels of intensity. Calculations of segregation in rectangular molds and in molds with smooth and abrupt variations of the cross sections exhibit significant differences in the distribution of macrosegregation due to the change in geometry. In addition, the segregation patterns are found to be particularly sensitive to the values of the equilibrium partition coefficients of the alloy components.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.