Abstract
Using magnetic stirring during solidification provides a good opportunity to control the microstructure of alloys, thus controlling their physical properties. However, magnetic stirring is often accompanied by a change in local concentrations, and new structures form which could harm the physical properties. This research paper investigated the effect of forced melt flow by a rotating magnetic field (RMF) on the macrostructure of an Al-Si eutectic alloy. To serve this purpose, Al-12.6 wt% Si alloy samples were solidified in a vertical Bridgman-type furnace equipped with a rotating magnetic inductor to induce the flow in the melt. The diameter and length of the sample are 8 mm and 120 mm, respectively. The solidification parameters are a temperature gradient (G) of 6 K/m, and the solid/liquid front velocity (v) of 0.1 mm/s. These samples were divided into parts during the solidification process, where some of these parts are solidified under the effect of RMF stirring while others are solidified without stirring. The structure obtained after solidification showed a distinct impact of stirring by RMF; new phases have been solidified which were not originally present in the structure before stirring. Besides the eutectic structure, the new phases are the primary aluminum and the primary silicon. The Si concentration and the volume fraction of each phase were measured using Energy-Dispersive Spectroscope (EDS)and new image processing techniques. The experimental results reveal that applying the RMF during the solidification has a distinct effect on the macrostructure of Al-Si eutectic alloys. Indeed, the RMF provokes macro-segregation, reduces the amount of eutectic structure, and changes the sample’s Si concentration distribution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.