Abstract

We systematically calculate the ground state properties of superheavy even-even nuclei with proton number Z=94–118. The calculations are based on the liquid drop macroscopic model and the microscopic model with the modified single-particle oscillator potential. The calculated binding energies and α-decay energies agree well with the experimental data. The reliability of the macroscopic-microscopic(MM)model for superheavy nuclei is confirmed by the good agreement between calculated results and experimental ones. Detailed comparisons between our calculations and Moller’s are made. It is found that the calculated results also agree with Moller’s results and that the MM model is insensitive to the microscopic single-particle potential. Calculated results are also compared with results from relativistic mean-field (RMF) model and from Skyrme-Hatree-Fock(SHF) model. In addition, half-lives, deformations and shape coexistence are also investigated. The properties of some unknown nuclei are predicted and they will be useful for future experimental researches of superheavy nuclei.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call