Abstract

A persistent challenge in utilizing Au nanocrystals for surface-enhanced Raman spectroscopy (SERS) lies in achieving controllable superstructures that maximize SERS performance. Here, a novel strategy is proposed to enhance the SERS performance by precisely adjusting the tip arrangements of Au nanobipyramids (BPs) in two-dimensional (2D) superlattices (SLs). This is achieved through ligand-exchange of Au BPs, followed by liquid-air interfacial assembly, resulting in large-area, transferrable SL membranes. The key to controlling the arrangement of Au BPs in the SLs is the regulation of the amount of free ligands added during self-assembly, which allows for the precise formation of various configurations such as tilted SLs, tip-on-tip SLs, and tip-to-tip SLs. Among these configurations, tip-on-tip SLs exhibit the highest enhancement factor for SERS, reaching an impressive value of 1.95×108, with uniform and consistent SERS signals across a large area. The experimental findings are further corroborated by simulations using the finite element method. This study establishes an efficient method for engineering the microstructure of 2D SLs composed of Au BPs, highlighting the importance of fine-tuning the tip arrangements of Au BPs to regulate SERS performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.