Abstract

Macroscopic and robust supercurrents are observed by direct electron transport measurements on a silicon surface reconstruction with In adatoms [Si(111)-(√7 × √3)-In]. The superconducting transition manifests itself as an emergence of the zero resistance state below 2.8 K. I-V characteristics exhibit sharp and hysteretic switching between superconducting and normal states with well-defined critical and retrapping currents. The two-dimensional (2D) critical current density J(2D,c) is estimated to be as high as 1.8 A/m at 1.8 K. The temperature dependence of J(2D,c) indicates that the surface atomic steps play the role of strongly coupled Josephson junctions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call