Abstract
Microtubule polymers typically function through their collective organization into a patterned array. The formation of the pattern, whether it is a relatively simple astral array or a highly complex mitotic spindle, relies on controlled microtubule nucleation and the basal dynamics parameters governing polymer growth and shortening. We have investigated the interaction between the microtubule nucleation and dynamics parameters, using macroscopic Monte Carlo simulations, to determine how these parameters contribute to the underlying microtubule array morphology (i.e. polymer density and length distribution). In addition to the well-characterized steady state achieved between free tubulin subunits and microtubule polymer, we propose that microtubule nucleation and extinction constitute a second, interdependent steady state process. Our simulation studies show that the magnitude of both nucleation and extinction additively impacts the final steady state free subunit concentration. We systematically varied individual microtubule dynamics parameters to survey the effects on array morphology and find specific sensitivity to perturbations of catastrophe frequency. Altering the cellular context for the microtubule array, we find that nucleation template number plays a defining role in shaping the microtubule length distribution and polymer density.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.