Abstract

Ordering and alignment of π-conjugated polymer chains are highly desirable for high performance and long life organic electronic devices. We report here self assembly of ordered and aligned solution processible Poly(3,3″′-dialkylquaterthiophene) (PQT-12) polymer at macroscopic level using Floating Film Transfer Method (FTM). PQT-12 polymer film is formed over solution of ethylene glycol and glycerol at different temperatures viz. 22, 26, 33, and 38 °C. PQT-12 films formed by FTM technique are further characterized for optical and morphological properties. UV-vis absorption (for polarize and unpolarize light) and surface topography/phase imaging are carried out by using UV-vis spectrometer and atomic force microscope (AFM), respectively. UV-vis spectra show the polymer chains alignment perpendicular to the film propagation direction and it is well supported by AFM images. The effect of temperature on ordering and alignment of PQT-12 shows 33 °C as an optimum temperature for alignment of polymer chains (a little compromise in ordering). The heating of polymer films at 110 °C for 2 h in ambient causes significant changes in UV-vis absorbance spectra, optical anisotropy, and AFM topography/phase imaging. Our studies provide better understanding of ordering and alignment of PQT-12 chains and also disordering on heating. This work further provides a facile and user-friendly technique for the long range ordered self assembly of PQT-12, which shows enormous potential for various electronic applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.