Abstract
We develop a theory of macroscopic resonant tunneling of flux in a double-well potential in the presence of realistic flux noise with a significant low-frequency component. The rate of incoherent flux tunneling between the wells exhibits resonant peaks, the shape and position of which reflect qualitative features of the noise, and can thus serve as a diagnostic tool for studying the low-frequency flux noise in SQUID qubits. We show, in particular, that the noise-induced renormalization of the first resonant peak provides direct information on the temperature of the noise source and the strength of its quantum component.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.