Abstract

We examine the Hall conductivity of macroscopic two-dimensional quantum system, and show that the observed quantities can sometimes violate the fluctuation dissipation theorem (FDT), even in the linear response (LR) regime infinitesimally close to equilibrium. The violation can be an order of magnitude larger than the Hall conductivity itself at low temperature and in strong magnetic field, which are accessible in experiments. We further extend the results to general systems and give a necessary condition for such large-scale violation to happen. This violation is a genuine quantum phenomenon that appears on a macroscopic scale. Our results are not only bound to the development of the fundamental issues of nonequilibrium physics, but the idea is also meaningful for practical applications, since the FDT is widely used for the estimation of noises from the LRs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.