Abstract

Based on a first-principles based multiscale approach, we study the polarity P of ferroelastic twin walls in SrTiO_{3}. In addition to flexoelectricity, which was pointed out before, we identify two new mechanisms that crucially contribute to P: a direct "rotopolar" coupling to the gradients of the antiferrodistortive oxygen tilts, and a trilinear coupling that is mediated by the antiferroelectric displacement of the Ti atoms. Remarkably, the rotopolar coupling presents a strong analogy to the mechanism that generates a spontaneous polarization in cycloidal magnets. We show how this similarity allows for a breakdown of macroscopic inversion symmetry (and therefore a macroscopic polarization) in a periodic sequence of parallel twins. These results open new avenues towards engineering pyroelectricity or piezoelectricity in nominally nonpolar ferroic materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call