Abstract

The analysis of networks, aimed at suitably defined functionality, often focuses on partitions that capture desired features. Chief among the relevant concepts is a 2-partition; this underlies the Cheeger inequality and highlights a ‘`constriction’' that limits accessibility between the respective parts of the network. In a similar spirit, we explore a notion of global circulation which necessitates a concept of a 3-partition that exposes this macroscopic feature of network flows. Graph circulation is often present in transportation networks as well as in certain biological networks. We introduce a notion of circulation for general graphs and then focus on planar graphs. For the latter we explain that a scalar potential characterizes circulation in complete analogy with the curl of planar vector fields and we present an algorithm for determining values of the potential and, hence, quantify circulation. We then discuss notions of circulation, explain how these may depend on graph embedding, draw parallels with Helmholtz-Hodge decomposition of vector fields, and conclude with an application in detecting abnormalities in cardiac circulatory physiology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.