Abstract

A macroscopic model that takes into account phenomena of overflow metabolism within glycolysis and glutaminolysis is proposed to simulate hybridoma HB-58 cell cultures. The model of central carbon metabolism is reduced to a set of macroscopic reactions. The macroscopic model describes three metabolism states: respiratory metabolism, overflow metabolism and critical metabolism. The model parameters and confidence intervals are obtained via a non linear least squares identification. It is validated with experimental data of fed-batch hybridoma cultures and successfully predicts the dynamics of cell growth and death, substrate consumption (glutamine and glucose) and metabolites production (lactate and ammonia). Based on a sensitivity analysis of the model outputs with respect to the parameters, a model reduction is proposed. Finally, the maximization of biomass productivity of hybridoma cell fed-batch cultures is analyzed. This model allows, on the one hand, quantitatively describing overflow metabolism in mammalian cell cultures and, on the other hand, will be valuable for monitoring and control of fed-batch cultures in order to optimize the process. This is illustrated in this contribution with the determination of optimal feeding profiles aiming at maximizing biomass productivity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call