Abstract

An areal-averaged form of classical Shallow-Water-Equations is developed in conjunction with Finite-Volume-Method for capturing sub-grid bed variation. The averaging mechanism treats sub-grid obstacles through depth-dependent-area-averaged porosity at the macroscopic level. This porosity assumes a binary distribution (0,1) for a resolution fine enough to treat bed-variation separately, resulting in convergence of the developed framework to classical form. An attempt has been made to incorporate the unresolved fine-scale flow-information (e.g., micro-scale and cross-scale interaction components) in terms of the macroscopic variables through a non-linear closure model. An augmented approximated Riemann solver incorporates varying source–sink terms within interfacial fluxes along with discontinuous porosity and bed variation. The model is applied to three test-cases ranging from wave-interaction with trapezoidal porous block to dam-break flows through obstacle(s) with varying grid configurations. The coarse-scale formulation, along with closure, produces a reasonably accurate solution with minimal computational overhead.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call