Abstract
Traffic flow on freeways is a complex process that often is described by a set of highly nonlinear, dynamic equations in the form of a macroscopic traffic flow model. However, some of the existing macroscopic models have been found to exhibit instabilities in their behavior and often do not track real traffic data correctly. On the other hand, microscopic traffic flow models can yield more detailed and accurate representations of traffic flow but are computationally intensive and typically not suitable for real-time implementation. Nevertheless, such implementations are likely to be necessary for development and application of advanced traffic control concepts in intelligent vehicle-highway systems. The development of a multilayer feed-forward artificial neural network model to address the freeway traffic system identification problem is presented. The solution of this problem is viewed as an essential element of an effort to build an improved freeway traffic flow model for the purpose of developing real-time predictive control strategies for dynamic traffic systems. To study the initial feasibility of the proposed neural network approach for traffic system identification, a three-layer feed-forward neural network model has been developed to emulate an improved version of a well-known higher-order continuum traffic model. Simulation results show that the neural network model can capture the traffic dynamics of this model quite closely. Future research will attempt to attain similar levels of performance using real traffic data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Transportation Research Record: Journal of the Transportation Research Board
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.