Abstract

This paper deals with the derivation of a macroscopic model for columnar dendritic solidification of binary mixtures using the volume averaging method with closure. The main originalities of the model are first related to the explicit description of evolving heterogeneities of the dendritic structures and their consequences on the derivation of averaged conservation equations, where additional terms involving porosity gradients are present, and on the determination of effective transport properties. These average properties are defined by the associated closure problems taking into account the geometry of the dendrites and the local intensity of the flow. The macroscopic solute transport is obtained by considering macroscale non-equilibrium giving rise to macroscopic dispersion and interfacial exchange phenomena. Mass exchange coefficients are accurately explicited as a function of the local geometry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.