Abstract

The loop $O(n)$ model is a model for a random collection of non-intersecting loops on the hexagonal lattice, which is believed to be in the same universality class as the spin $O(n)$ model. It has been predicted by Nienhuis that for $0\le n\le 2$ the loop $O(n)$ model exhibits a phase transition at a critical parameter $x_c(n)=\tfrac{1}{\sqrt{2+\sqrt{2-n}}}$. For $0<n\le 2$, the transition line has been further conjectured to separate a regime with short loops when $x<x_c(n)$ from a regime with macroscopic loops when $x\ge x_c(n)$. In this paper, we prove that for $n\in [1,2]$ and $x=x_c(n)$ the loop $O(n)$ model exhibits macroscopic loops. This is the first instance in which a loop $O(n)$ model with $n\neq 1$ is shown to exhibit such behaviour. A main tool in the proof is a new positive association (FKG) property shown to hold when $n \ge 1$ and $0<x\le\frac{1}{\sqrt{n}}$. This property implies, using techniques recently developed for the random-cluster model, the following dichotomy: either long loops are exponentially unlikely or the origin is surrounded by loops at any scale (box-crossing property). We develop a 'domain gluing' technique which allows us to employ Smirnov's parafermionic observable to rule out the first alternative when $x=x_c(n)$ and $n\in[1,2]$.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call