Abstract

We investigate systems of self-propelled particles with alignment interaction. Compared to previous work, the force acting on the particles is not normalized and this modification gives rise to phase transitions from disordered states at low density to aligned states at high densities. This model is the space inhomogeneous extension of a previous work by Frouvelle and Liu in which the existence and stability of the equilibrium states were investigated. When the density is lower than a threshold value, the dynamics is described by a non-linear diffusion equation. By contrast, when the density is larger than this threshold value, the dynamics is described by a hydrodynamic model for self-alignment interactions previously derived in Degond and Motsch. However, the modified normalization of the force gives rise to different convection speeds and the resulting model may lose its hyperbolicity in some regions of the state space.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.