Abstract
Steady-state heat transfer considerations have been used to determine the macroscopic solid-liquid interface shape in solidification processes such as floating zone melting and crystal pulling. It was found by means of computer solutions that the Biot number haR/k, is the prime determinant of the shape of the interface. As the Biot number increases, the interface becomes increasingly concave into the solid. A uniform heat input model was formulated which gives analytical results close to the computer results. A one-dimensional analysis showed that the fractional error in the position of the isotherms caused by ignoring the heat carried by the motion of the crystal is approximately Vρcp−R/8hak. The effect of various heat transfer parameters on the dislocation generation caused by thermal stresses was also predicted and found to compare fairly well with experimental results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.