Abstract

By using dynamic NMR microscopy with 40 μm spatial resolution we have demonstrated the existence of specific wall effects in electroosmotic and pressure-driven flows through a fixed bed at low column-to-particle diameter ratio. While the geometrical wall effect encountered in pressure-driven flow through the packed capillary is due to the radial distribution of interstitial porosity, with increasing void space closer to the wall, the electrokinetic wall effect is caused by different values of the zeta-potential associated with the inner surface of the capillary and those of the particles. It is shown that these wall effects are very systematic along the column axis for both types of fluid flow. They can cause a persistent (i.e., long-time) disequilibrium in the axial dispersion behavior, and associated correlation lengths of the flow field may cover the total radius of the packed capillary needing trans-column equilibration. The characteristic times of these macroscopic flow heterogeneities in electroosmo...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.