Abstract

This paper presents a general methodology to design macroscopic fluid models that take into account localized kinetic upscaling effects. The fluid models are solved in the whole domain together with a localized kinetic upscaling that corrects the fluid model wherever it is necessary. This upscaling is obtained by solving a kinetic equation on the nonequilibrium part of the distribution function. This equation is solved only locally and is related to the fluid equation through a downscaling effect. The method does not need to find an interface condition as do usual domain decomposition methods to match fluid and kinetic representations. We show our approach applies to problems that have a hydrodynamic time scale as well as to problems with diffusion time scale. Simple numerical schemes are proposed to discretize our models, and several numerical examples are used to validate the method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.