Abstract

The local time in an ensemble of particles measures the amount of time the particles spend in the vicinity of a given point in space. Here we study fluctuations of the empirical time average R=T−1∫0Tρx=0,tdt of the density ρx=0,t at the origin (so that R is the local time spent at the origin, rescaled by T) for an initially uniform one-dimensional diffusive lattice gas. We consider both the quenched and annealed initial conditions and employ the Macroscopic Fluctuation Theory (MFT). For a gas of non-interacting random walkers (RWs) the MFT yields exact large-deviation functions of R, which are closely related to the ones recently obtained by Burenev et al. (2023) using microscopic calculations for non-interacting Brownian particles. Our MFT calculations, however, additionally yield the most likely history of the gas density ρ(x,t) conditioned on a given value of R. Furthermore, we calculate the variance of the local time fluctuations for arbitrary particle- or energy-conserving diffusive lattice gases. Better known examples of such systems include the simple symmetric exclusion process, the Kipnis-Marchioro-Presutti model and the symmetric zero-range process. Our results for the non-interacting RWs can be readily extended to a step-like initial condition for the density.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.