Abstract

The usual macroscopic equations of motion for two-phase immiscible displacement in porous media are known to be physically incomplete because they do not contain the surface tension and surface areas governing capillary phenomena. Therefore, a more general system of macroscopic equations is derived here that incorporates the spatiotemporal variation of interfacial energies. These equations are based on the theory of mixtures in macroscopic continuum mechanics. They include wetting phenomena through surface tensions instead of the traditional use of capillary pressure functions. Relative permeabilities can be identified in this approach that exhibit a complex dependence on the state variables. A capillary pressure function can be identified in equilibrium that shows the qualitative saturation dependence known from experiment. In addition, the proposed equations include a description of the spatiotemporal changes of residual saturations during immiscible displacement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.