Abstract

AbstractCopper sulfide (CuS) is an attractive electrode material for batteries, thanks to its intrinsic mixed conductivity, ductility and high theoretical specific capacity of 560 mAh g−1. Here, CuS is studied as cathode material in lithium solid‐state batteries with an areal loading of 8.9 mg cm−2 that theoretically corresponds to 4.9 mAh cm−2. The configuration of the cell is LiLi3PS4[CuS (70 wt%) + Li3PS4 (30 wt%)]. No conductive additive is used. CuS undergoes a displacement reaction with lithium, leading to macroscopic phase separation between the discharge products Cu and Li2S. In particular, Cu forms a network of micrometer‐sized, well‐crystallized particles that seems to percolate through the electrode. The formed copper is visible to the naked eye. The initial specific discharge capacity at 0.1 C is 498 mAh g(CuS)−1, i.e., 84% of its theoretical value. The initial Coulomb efficiency (ICE) reaches 95%, which is higher compared to standard carbonate‐based liquid electrolytes for the same cell chemistry (≈70%). After 100 cycles, the specific capacity reaches 310 mAh g(CuS)−1. With the current composition, the cell provides 58.2 Wh kg−1 at a power density of 7 W kg−1, which is superior compared to other transition metal sulfide cathodes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call