Abstract

SUMMARYEffective moisture and chloride ion diffusivity coefficients for concrete are determined by computational homogenization, where concrete is modeled on the mesoscale as a heterogenous three‐phase composite material. By imposing moisture and chloride ion gradients on a representative volume element, effective macroscale properties are obtained through finite element analysis. A parametric study of the effects of the ballast content was carried out. The numerical results correspond well with an estimate of the Hashin–Shtrikman type available in the literature. The computational homogenization strategy proposed here also includes the interfacial transition zone, and its influence on the effective diffusivity coefficients is assessed. Copyright © 2012 John Wiley & Sons, Ltd.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.