Abstract
We extend our previous analysis of closed-form equations for finite Knudsen number flow and scalar transport that result from the Boltzmann–Bhatnagar–Gross–Krook (BGK) kinetic theory with constant relaxation time. Without approximation, we obtain closed-form equations for arbitrary spatial dimension and flow directionality which are local differential equations in space and integral equations in time. These equations are further simplified for incompressible flow and scalars. The particular case of no-flow scalar transport admits analytical solutions that exhibit ballistic behaviour at short times while behaving diffusively at long times. It is noteworthy that, even with constant relaxation time BGK microphysics, quite complex macroscopic descriptions result that would be difficult to obtain using classical constitutive models or continuum averaging.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.