Abstract

Macroscopic quantum coherence has been observed in some many-body systems including superconductors, quantum liquids1 and cold atom condensates2, but never for a single quasi-particle state. In an ideal semiconductor, excitons (electron–hole pairs bound by the Coulomb interaction) can, in principle, exist as delocalized plane waves extending over the entire volume. However, any kind of disorder prevents long-range spatial coherence from emerging. There has been evidence for the formation of macroscopic coherent states only in condensate phases such as in the case of microcavity polaritons condensation3,4 or in a dense quasi-two-dimensional exciton gas5. It is unclear however, whether in this latter case the observations are really related to macroscopic coherence6. Here, we show that a single exciton state in an individual ordered conjugated polymer chain7,8, shows macroscopic quantum spatial coherence reaching tens of micrometres, limited by the chain length. The spatial coherence of the k=0 exciton state is demonstrated by selecting two spatially separated emitting regions of the chain and observing their interference.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.