Abstract

The osmotic swelling in clays has been extensively studied at the physico-chemical scale. The present paper addresses the question of the modelling of this phenomenon from the mechanical point of view. First, the classical macroscopic thermodynamic framework for saturated porous continua is extended in order to take into account the solid-salt interaction through the concept of macroscopic activity coefficient of the salt. The micromechanical approach then incorporates this interaction through the concept of swelling pressure which is used for describing the internal forces in the fluid phase at the microscopic scale. The results of a physico-chemical theory for the solid-salt interaction, such as the e.d.l. theory, can be introduced in both approaches. Each of them leads to the identification of a deviation, of chemical origin, to Terzaghi's effective stress principle. Besides, the micromechanical approach allows us to clearly differentiate the mechanical and the chemical parts of clay materials elasticity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.