Abstract

ABSTRACTAn epitaxy‐directing solvent additive 1,3,5‐trichlorobenzene is combined with an off‐center spin‐casting technique to produce poly(3‐hexylthiophene) (P3HT) fibers with uniaxial in‐plane alignment on the centimeter scale. Photoconductive atomic force microscopy (pc‐AFM) is used to characterize planar heterojunction devices assembled from phenyl‐C61 butyric acid methyl ester (PCBM) acceptor and both aligned and unaligned P3HT donor. By varying the relative positions of the laser spot (site of carrier generation) and probe (site of hole extraction), it is found that devices with aligned P3HT exhibit anisotropic and greatly enhanced long‐range photocarrier transport, with nearly 10% of original photocurrent measured 400 µm from the laser spot along the direction parallel to the alignment. Complementary thin film transistor (TFT) measurements reveal a factor of ∼3.5 difference in the hole mobilities parallel and perpendicular to the direction of alignment. Together, these findings highlight the importance of macroscopic alignment as a strategy to overcome the low mobilities of disordered polymer semiconductors.1 © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016, 54, 180–188

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.