Abstract

Liquid superlubricity has attracted much attention, due to its ability to significantly reduce friction on the macroscale. However, the severe wear caused by the long running-in period is still one of the bottlenecks restricting the practical application of liquid superlubricating materials. In this work, the obtained polyethylene glycol-phytic acid (PEG-PA) composite liquid lubricants showed outstanding superlubricating properties (μ ≈ 0.006) for Si3N4/glass friction pairs with an ultrashort running-in period (∼1 s) under high Hertzian contact pressure of ∼758 MPa. More importantly, even after up to 12 h (∼700 m of travel), only about 100 nm deep wear scars were found on the surface of the glass sheet (wear rate = 2.51× 10-9 mm3 N-1 m-1). From the molecular point of view, the water molecules anchored between the two friction pairs have extremely low shear force during the friction process, and the strong hydrogen bond interaction between PEG and PA greatly improves the bearing capacity of the lubricant. This work addresses the challenge of liquid superlubricant simultaneously exhibiting low shear force and high load-carrying capacity and makes it possible to obtain liquid superlubrication performance with an extremely short running-in time.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call