Abstract

HypothesisModifying surfaces with concentrated polymer brushes (CPBs) is an effective way to reduce friction of tribo-pairs lubricated with liquids. We investigate the hypothesis that colloids grafted with CPBs (hybrid colloids) can deposit onto tribo-substrates by varying the solvent quality with respect to the polymer, in order to obtain ultra-low coefficients of friction (CoFs), so-called superlubricity. ExperimentsHybrid colloids are synthesized and characterized, and a dynamic light scattering compares their swellings in aqueous solutions of glycerol or polyethylene glycol. A mini-traction machine with viscoelastic tribo-pairs is used for lubrication experiments. Adsorption of colloids and film structures are tested using a quartz crystal microbalance and an atomic force microscope. FindingsThe solvent controls whether hybrid colloids spontaneously adsorb to the substrate under quiescent conditions or require contact forces to enable (tribo-)deposition. In both cases, the friction in the boundary-mixed lubrication regimes is lower upon increasing the degree of swelling of CPBs and upon increasing coverage of deposited colloids. The greatest lubrication enhancement and surface coverage occur for the spontaneously adsorbed colloids, with ultra-low CoFs of order 10-3 over a large range of speeds. The results demonstrate the potential for hybrid colloids to be used as solvent dispersible “friction modifier additives”.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call