Abstract
The double network concept, based on the fracture of sacrificial bonds, has been revolutionary toward the creation of robust soft materials. Based onthe essence of double network hydrogels, macroscale, three-dimensional printed rigid sacrificial networks are embedded within silicone rubber stretchable matrices. Preferential fracture of the sacrificial network results in a ∼60 time increase in stiffness and a ∼50% increase in the work of extension compared with the neat matrix. Maximizing yield strength while maintaining multistep internal fracture occurs when the strength of the sacrificial network approaches the strength of the matrix. Upon determining the optimal sacrificial network strength, the sacrificial bond section density can be increased to maximize energy dissipation and toughening efficiencies up to ∼70% of the maximum theoretical toughness are achieved. High toughness and dissipation are achieved because topological interlocking enables significant force transmission to the sacrificial network at smaller length scales than interfacial adhesion, allowing much higher sacrificial bond density. This method is general and can be used with a variety of materials systems, without requiring strong interfacial adhesion, contrasting traditional composite systems. Demonstrating that the double network concept can be used at length scales far beyond the molecular scale will have important implications toward the development of future structural materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.