Abstract

Wing dimorphism is a widespread phenomenon of many insect species. The katydid species Metrioptera bicolor Philippi displays distinct wing dimorphism. In this paper, we recorded the calling songs of two wing morphologies of the species and observed the acoustic generators under stereoscope and scanning electron microscope (SEM). The two wing morphologies showed differences in acoustic signals but no obvious differences in morphological traits. The individuals with long hind-wings produced an energetic call, i.e., the calling songs with longer pulse duration but shorter interval. Therefore we infer that the advantage of acoustic signals is a compensation for the weakness in reproduction. Furthermore, some molecular tests were performed to clarify the differences between them at a molecular level. The individuals with long hind-wings got together, while the short-winged individuals were in a group. We proposed that the molecular difference has already existed between these two groups at birth. From the consistency of the stridulatory organs and the differentiation of the acoustic signals, we could infer the behavioral traits might evolve rapidly than the morphological features.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.