Abstract

Tissue engineering strongly relies on the use of hydrogels as highly hydrated 3D matrices to support the maturation of laden cells. However, because of the lack of microarchitecture and sufficient porosity, common hydrogel systems do not provide physical cell-instructive guidance cues and efficient transport of nutrients and oxygen to the inner part of the construct. A controlled, organized cellular alignment and resulting alignment of secreted ECM are hallmarks of muscle, tendons, and nerves and play an important role in determining their functional properties. Although several strategies to induce cellular alignment have been investigated in 2D systems, the generation of cell-instructive 3D hydrogels remains a challenge. Here, we report on the development of a simple and scalable method to efficiently generate highly macroporous constructs featuring aligned guidance cues. A precross-linked bulk hydrogel is pressed through a grid with variable opening sizes, thus deconstructing it into an array of aligned, high aspect ratio microgels (microstrands) with tunable diameter that are eventually stabilized by a second photoclick cross-linking step. This method has been investigated and optimized both in silico and in vitro, thereby leading to conditions with excellent viability and organized cellular alignment. Finally, as proof of concept, the method has been shown to direct aligned muscle tissue maturation. These findings demonstrate the 3D physical guidance potential of our system, which can be used for a variety of anisotropic tissues and applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call