Abstract

ABSTRACT Purpose To investigate the immunotherapeutic effects of macrophage-like induced pluripotent stem (iPS) cell-derived suppressor cells (SCs) in ocular immune response and experimental autoimmune uveoretinitis (EAU). Methods The genes of Oct3/4, Sox2, Klf4, and c-Myc were transferred to B cells enriched from the spleen cells of C57BL/6 mice by using retrovirus vectors. Transferred B cells were cultured for 17 days to obtain colonies of iPS cells. Through additional steps, iPS-SCs were induced. An antigen-specific T cell proliferation assay was performed with CD4+ T cells collected from draining lymph nodes of the mice immunized with human interphotoreceptor retinoid-binding protein (hIRBP) peptide and co-cultured with iPS-SCs. Cytokine concentrations in the culture supernatant were examined. Mice were immunized with hIRBP peptide to induce EAU. The iPS-SCs were administered into the mice one day before the induction of EAU. Results The iPS-SCs decreased hIRBP-specific T cell proliferation depending on the number of cells. Productions of tumor necrosis factor-α and interferon-γ were significantly decreased; however, transforming growth factor-β1, nitric oxide, interleukin (IL)-13, IL-17A, and IL-17 F levels were elevated in the supernatant when the collected T cells were co-cultured with iPS-SCs. The iPS-SCs had immunosuppressant effects even without cell-to-cell contact, and their effects were non-specific to the antigen preloaded on iPS-SCs. EAU was significantly milder in the mice administered iPS-SCs prior to immunization. Conclusions Macrophage-like iPS-SCs reduced Th1 immune response to a retinal antigen and Th1-mediated EAU in mice. These results showed the possibility of the application of iPS technology to the treatment of noninfectious ocular inflammation, endogenous uveitis, in the future.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.