Abstract

Kupffer cells and other macrophages play an important role in pathogenesis of toxicants in the liver. The aim of this study was to evaluate the effect of macrophages on hepatocyte production of nitric oxide (NO), which has been previously reported to be protective toward oxidative stress induced in primary rat hepatocytes. For this purpose, RAW 264.7 macrophages were added to primary rat hepatocytes at various ratios between macrophages and hepatocytes. These cocultures were supplemented with lipopolysaccharide (LPS) and interferon gamma (IFN-gamma) for 23 hours to induce NO synthase and trigger NO production. NO production was followed by quantification of nitrites in culture medium and dinitrosyl iron complexes (DNIC) in intact hepatocytes after separation from macrophages. In cocultured hepatocytes incubated with LPS and IFN-gamma, DNIC and nitrite levels decreased compared with those observed in hepatocytes cultured without macrophages in the same conditions. Moreover, inhibition of NO production in hepatocyte cocultures was macrophage-number-dependent. Macrophage-conditioned medium also inhibited NO production in hepatocytes, suggesting that the effect of macrophages was mediated by soluble factors. Among the soluble factors known to decrease NO levels are some cytokines, growth factors, reactive oxygen species, and prostaglandins. Ultrafiltration of macrophage-conditioned medium through a 500-d membrane to rule out higher-molecular-weight molecules, such as anti-inflammatory cytokines and growth factors, failed to restore NO production. In the same way, the use of superoxide dismutase (SOD) and catalase (CAT) to eliminate reactive oxygen species produced by macrophages did not lead to recovery of NO levels in hepatocytes. However, when NO synthesis was inhibited in macrophages by NG-monomethyl-L-arginine (L-NMMA), hepatocytes recovered the capacity to produce NO. A net decrease of prostaglandin E2 (PGE2) release by macrophages was concomitantly observed. Moreover, inhibition of PGE2 production in macrophages by indomethacin led to restoration of NO levels. Taken together, our observations suggest that NO synthesized by macrophages can decrease NO production in hepatocytes via PGE2 release. Because of the protective role of NO toward many liver injuries, it may be postulated that macrophages contribute through this mechanism to liver damage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.